Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders

Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and... Ausführliche Beschreibung

1. Verfasser:
Weitere Verfasser: [advisor] ; [referee]
Format: Elektronische Hochschulschrift
veröffentlicht: Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015.
Schlagworte:
RVK-Notation: ZM 6600 Glastechnologie (Rohstoffaufbereitung, Formgebung)
Kein Bild verfügbar
Gespeichert in:
marc
LEADER 10597cam a22006251574500
001 0014673852
007 cr |||||||||||
008 150618s2015 xx eng
041 |a eng 
037 |n urn:nbn:de:bsz:14-qucosa-170795 
100 |a Jin Young Kim  |e author 
700 |a Jürgen Eckert  |e advisor 
700 |a Jürgen Eckert  |e referee 
700 |a Do-Hyang Kim  |e referee 
245 |a Synthesis and Characterization of Bulk Metallic Glasses, Composites and Hybrid Porous Structures by Powder Metallurgy of Metallic Glassy Powders 
260 |a Dresden :  |b Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden,  |c 2015.  |9 (issued 2015-06-18) 
520 3 |a Metallic glasses exhibit many attractive attributes such as outstanding mechanical, magnetic, and chemical properties. Due to the absence of crystal defects, metallic glasses display remarkable mechanical properties including higher specific strength than crystalline alloys, high hardness and larger fracture resistance than ceramics. The technological breakthrough of metallic glasses, however, has been greatly hindered by the limited plastic strain to failure. Thus, several strategies have been employed to improve the intrinsic and extrinsic effects on the flow behavior of metallic glasses with respect to their fracture toughness and overall plastic strain. One of the suggested strategies is the production of a composite consisting of the brittle metallic glass along with a ductile second phase that either acts as an active carrier of plastic strain or passively enhances the multiplication of shear bands via shear-band splitting . Another approach for increasing plastic deformation consists of introducing pores as a gaseous second phase into the material. The pores are similarly effective in delaying catastrophic failure resulting from shear band localization. In metallic glasses with high porosity, propagation of shear bands can even become stable, enabling macroscopic compressive strains of more than 80 % without fracture. In this thesis, Ni59Zr20Ti16Si2Sn3 glass and its composites have been fabricated using mechanical milling and consolidation by hot pressing followed by extrusion of Ni59Zr20Ti16Si2Sn3 metallic glass powder or Ni59Zr20Ti16Si2Sn3 metallic glass powder reinforced with 40 vol.% of brass particles to obtained bulk composite materials with high strength and enhanced compressive plasticity and to generate porous structure in Ni59Zr20Ti16Si2Sn3 metallic glass using selective dissolution. The brass–glass powder mixtures to be consolidated were prepared using two different approaches: manual blending and ball milling to properly vary size and morphology of the second phase in the composites. Powder consolidation was carried out at temperatures within the supercooled Liquid (SCL) region, where the glassy phase displays a strong decrease of viscosity, with using the sintering parameters which were chosen after analysis of the crystallization behavior of the glassy phase to avoid its crystallization during consolidation. Ball milling has a significant effect on the microstructure of the powder mixtures: a refined layered structure consisting of alternating layer of glass and brass is formed as a result of the mechanical deformation. However, ball milling reduces the amorphous content of the composite powders due to mechanically induced crystallization and reaction of the glass and brass phases during heating. In addition, the milling of the composite powders and the following consolidation step reduces the amorphous content by about 50 %. The bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy synthesized by hot pressing exhibits higher strength (2.28 GPa) than that of the as-cast bulk amorphous Ni59Zr20Ti16Si2Sn3 alloy (2.2 GPa). The mechanical behavior of the glass-brass composites is significantly affected by the control of the microstructure between the reinforcement and the nano-grained matrix phase through the different methods used for the preparation of the powder mixtures. The strength of the composites increases from 500 MPa for pure brass to 740 and 925 MPa for the composites with 40 and 60 vol.% glass reinforcement prepared by manual blending. The strength further increases to 1240 and 1640 MPa for the corresponding composites produced by ball milling caused by the remarkable effect of the matrix ligament size on the strengthening of the composites. The porous metallic glass was obtained by the selective dissolution in a HNO3 solution of the fugitive brass phase in the Ni59Zr20Ti16Si2Sn3 composite. The microstructure of the porous samples consists of highly elongated layered pore structures and/or irregularly shaped pores. The average size of the pores depends on the processing parameters and can be varied in the range of 0.4–15 µm. Additional porous samples were prepared from different extruded composite precursors of blended and milled powder mixtures. This leads to customized hybrid porous structures consisting of a combination of large and small pores. The specific surface area of the porous Ni-based metallic glass powder measured by the BET method is 16 m2/g, while the as-atomized Ni59Zr20Ti16Si2Sn3 powder has a specific surface area of 0.29 m2/g. This indicates a mechanical milling induced enhancement in surface area by refinement of the fugitive brass phase. However the specific surface area of the porous Ni-based metallic glass obtained from as-extruded precursors is 10 m2/g caused by a breakdown of the porous structure during selective dissolution of the nano-scale fugitive phase. Although milling of the present composite powders and the following consolidation step reduces the amorphous content by about 50 %, through the use of glassy phases with improved stability against mechanically induced crystallization along with reduced affinity with the fugitive phase to avoid unwanted reactions during processing, this approach using powder metallurgical offers the possibility to produce highly active porous bulk materials for functional applications, such as catalysis, which require the fast transport of reactants and products provided by the large pores along with high catalytic activity ensured by the large surface area characterizing the small pores. Accordingly, gas absorption ability tests of porous Ni-based metallic glass powders have been performed in order to evaluate the possibility of replacement of conventional support materials. From these first tests it can be conclude that additional opportunities should exist for nano-porous MGs with designed architecture of porous structures that are tailored to specific functional applications. 
520 3 |a Metallische Gläser weisen viele attraktive mechanische, magnetische und chemische Eigenschaften auf. Aufgrund der fehlenden Kristallstruktur zeigen metallische Gläser bemerkenswerte mechanische Eigenschaften, einschließlich höherer spezifischer Festigkeit, höherer Härte und größerer Bruchfestigkeit als Keramik. Der technologischen Durchbruch metallischer Gläser wird jedoch bis heute stark von ihremspröden Bruchverhalten behindert. Deshalb wurden verschiedene Herstellungsverfahren entwirkt, um sowohl die plastische Verformung der metallischer Massivgläser zu erhöhen, als auch um die mechanischen Eigenschaften generell zu verbessern. Eine mögliche Methode, zur Erhöhung der Plastizität und zur Beeinflussung der mechanischen Eigenschaften der metallischen Gläser ist der Einbau zweiter Phasen, wie z.B. durch Fremdpartikel Verstärkung oder Poren in Kompositen. Die Scherband bewegung wird durch die Wechselwirkung mit zweiten Phasen behindert, und gleichzeitig werden durch die in den Grenzflächen entstehenden Spannungsspitzen zwischen der zweiten Phase und der Matrix neue Scherbänder initiert. Dies führt zur Bildung einer Vielzahl von Scherbändern, was eine höhere plastische Dehnung zur Folge hat, da die Deformationsenergie auf ein größeres Volumen verteilt wird. In der vorliegenden Arbeit wurden Ni59Zr20Ti16Si2Sn3 Massivglas und mit Messing- verstärkte Komposite durch Kugelmahlen und Heißpressen mit anschließender Extrusion von Ni59Zr20Ti16Si2Sn3 Pulver oder Ni59Zr20Ti16Si2Sn3 Pulver mit 40 vol.% Messing Partikeln hergestellt. Neben der Herstellung der Ni59Zr20Ti16Si2Sn3 Komposite mit Messing Partikeln, wurden auch Ni59Zr20Ti16Si2Sn3 Komposite mit definierter Porösität durch die selektive Auflösung der zweiten Phase erzeugt. Die verwendete Mischung von Messing und metallischem Glaspulver wurde über zwei verschiedene Ansätzen hergestellt: die Pulver wurden manuell gemischt oder gemahlen, um die optimale Größe und Morphologie der zweiten Phase in den Komositen zu erzeugen. Das Sintern de 
500 |a doctoralThesis 
856 4 0 |u http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-170795 
856 4 1 |u http://www.qucosa.de/fileadmin/data/qucosa/documents/17079/Kim_Jin_Young_Dissertation.pdf 
650 4 |a Ni-basis Massivglas und Komposite 
650 4 |a Porösität 
650 4 |a Kugelmahlen 
650 4 |a Extrusion 
650 4 |a selektive Auflösung 
650 4 |a Ni-based metallic glass composites 
650 4 |a Porosity 
650 4 |a Ball milling 
650 4 |a Extrusion 
650 4 |a Selective dissolution 
082 0 |a 620 
084 |2 rvk  |a ZM 6600  |9 ZG - ZS  |9 ZM  |9 ZM 6000 - ZM 6700  |9 ZM 6400  |9 ZM 6600 
936 r v |a ZM 6600  |b Glastechnologie (Rohstoffaufbereitung, Formgebung)  |k Technik  |k Werkstoffwissenschaften, Fertigungsverfahren, Fertigung  |k Nichtmetallisch-anorganische Werkstoffe  |k Glas als Werkstoff  |k Glastechnologie (Rohstoffaufbereitung, Formgebung) 
852 |a DE-14  |z 2017-04-26T17:23:48Z 
852 |a DE-15  |z 2017-11-06T19:49:39Z 
852 |a DE-D161  |z 2017-04-26T17:23:48Z 
852 |a DE-Gla1  |z 2017-04-26T17:23:48Z 
852 |a DE-Ch1  |z 2017-04-26T17:23:48Z 
852 |a DE-D275  |z 2018-02-14T07:42:43Z 
852 |a DE-D117  |z 2017-04-26T14:00:16Z 
852 |a FID-BBI-DE-23  |z 2019-01-21T06:40:05Z 
852 |a DE-Rs1  |z 2017-04-26T17:23:48Z 
852 |a DE-Bn3  |z 2017-04-26T17:23:48Z 
852 |a DE-L242  |z 2017-04-26T14:00:16Z 
852 |a DE-540  |z 2018-01-17T11:00:52Z 
852 |a DE-105  |z 2017-04-26T17:23:48Z 
852 |a DE-Zwi2  |z 2017-04-26T17:23:48Z 
852 |a DE-Pl11  |z 2017-04-26T17:23:48Z 
852 |a DE-Brt1  |z 2017-04-26T17:23:48Z 
852 |a DE-L229  |z 2017-04-26T17:23:48Z 
852 |a DE-Zi4  |z 2017-04-26T17:23:48Z 
852 |a DE-L328  |z 2017-04-26T14:00:16Z 
852 |a DE-D13  |z 2017-04-26T14:42:17Z 
980 |a urn:nbn:de:bsz:14-qucosa-170795  |b 22  |c 201704261642 
solr