The Hypoelliptic Laplacian and Ray-Singer Metrics. (AM-167)

This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut... Ausführliche Beschreibung

1. Verfasser:
Weitere Verfasser: [author.]
Verfasserangabe: Gilles Lebeau, Jean-Michel Bismut.
Format: E-Book
veröffentlicht: Princeton, NJ : Princeton University Press, [2008]
Umfang: 1 online resource :; 4 line illus.
Enthält auch: Frontmatter -- Contents -- Introduction -- Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles -- Chapter 2. The hypoelliptic Laplacian on the cotangent bundle -- Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel -- Chapter 4. Hypoelliptic Laplacians and odd Chern forms -- Chapter 5. The limit as t → +∞ and b → 0 of the superconnection forms -- Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics -- Chapter 7. The hypoelliptic torsion forms of a vector bundle -- Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula -- Chapter 9. A comparison formula for the Ray-Singer metrics -- Chapter 10. The harmonic forms for b → 0 and the formal Hodge theorem -- Chapter 11. A proof of equation (8.4.6) -- Chapter 12. A proof of equation (8.4.8) -- Chapter 13. A proof of equation (8.4.7) -- Chapter 14. The integration by parts formula -- Chapter 15. The hypoelliptic estimates -- Chapter 16. Harmonic oscillator and the J0 function -- Chapter 17. The limit of A'2φb,±H as b → 0 -- Bibliography -- Subject Index -- Index of Notation
Frontmatter -- Contents -- Introduction -- Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles -- Chapter 2. The hypoelliptic Laplacian on the cotangent bundle -- Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel -- Chapter 4. Hypoelliptic Laplacians and odd Chern forms -- Chapter 5. The limit as t → +∞ and b → 0 of the superconnection forms -- Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics -- Chapter 7. The hypoelliptic torsion forms of a vector bundle -- Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula -- Chapter 9. A comparison formula for the Ray-Singer metrics -- Chapter 10. The harmonic forms for b → 0 and the formal Hodge theorem -- Chapter 11. A proof of equation (8.4.6) -- Chapter 12. A proof of equation (8.4.8) -- Chapter 13. A proof of equation (8.4.7) -- Chapter 14. The integration by parts formula -- Chapter 15. The hypoelliptic estimates -- Chapter 16. Harmonic oscillator and the J0 function -- Chapter 17. The limit of A'2φb,±H as b → 0 -- Bibliography -- Subject Index -- Index of Notation
Ausgabe: Course Book
Gesamtaufnahme:
Schlagworte:
Buchumschlag
Gespeichert in: